1. Karta

struct Card {
enum Element { Fire, Water, Earth, Air };
Element element;
int value;

b

2. Pole mriezky (GridTile)
Na mriezke su tvary, ktoré sa obsadzuju kartou.
struct GridTile {

bool occupied = false;

int owner = -1; // 0 = hrdd 1, 1 = hrac¢ 2
Card placedCard; // karta pouzitd na obsadenie
bi
3. Tvar na mriezke (ShapeType)
enum class ShapeType {
Cross,
S—-shape,
Square,
L-shape
}i
4. Mriezka
class Grid {
public:

int width, height;
vector<vector<GridTile>> tiles; // 2-D matica na reprezentaciu herného
polia

Grid(int w, int h) : width(w), height(h), tiles(h,
vector<GridTile> (w)) {}

// Kontrola hranic
bool isInside(int x, int y) const {
return x >= 0 && x < width && vy >= 0 && y < height;

}

bool placeCard(int x, int y, const Card& card, int playerId) {
if (!isInside(x, y)) return false;
if (tiles[y] [x].occupied) return false;

tiles[y] [x].occupied = true;
tiles[y] [x].owner = playerId;
tiles[y] [x].placedCard = card;
return true;

}

Card removeCard (int x, int y) {
Card c = tiles[y][x].placedCard;
tiles[y][x].occupied = false;
tiles[y] [x].owner = -1;
return c;



b

5. Hrac¢ (Player)

Kazdy hrac mé:

3 karty v ruke

- svo]j balicek ~10 kariet

- zozbierané ("vyhrané") karty
- ID hraca
class Player {
public:
int id; // 0 alebo 1
vector<Card> hand; // 3 karty
vector<Card> deck; // vlastny balicek
vector<Card> wonCards; // ziskané karty z mriezky
Player (int playerId) : id(playerId) {}

// Potiahnutie kariet zo svojho balicka
void drawFromDeck (int n) {
for (int 1 = 0; 1 < n && !deck.empty(); i++) {
hand.push back (deck.back());
deck.pop back();

}

// Vyhodenie vsSetkych kariet z ruky

void discardAllFromHand (vector<Card>& discardHand) {
for (auto& c : hand) discardHand.push back(c);
hand.clear();

}i

6. Velky balicek (BigDeck)
PouzZiva sa pri situécii, Ze hra&¢ nemé& Ziadnu hratelnt kartu.
class BigDeck {
public:
vector<Card> cards;
vector<Card> draw (int n) {
vector<Card> drawn;
for (int i = 0; i < n && !cards.empty(); i++) {
drawn.push back (cards.back());
cards.pop back();
}
return drawn;

}

bool isEmpty () const {
return cards.empty();
}
}i

7. Discard pre karty odhodené z ruky
vector<Card> discardHand;



8. Kontrola, ¢i hrac¢ mbdze zahrat
bool canPlayerPlay(const Player& p, const Player& opponent, const Gridé&
grid) f
// zatial len placeholder, redlna logika podla hodnot a susedov
return true;

9. Situédcia: hréa¢ nemdze zahrat - odhodenie ruky + potiahnutie z velkého
balicka
void handleNoPlayableCards (Player& player, BigDecké& bigDeck,
std::vector<Card>& discardHand) {
// 1. Odhodit celd ruku
player.discardAllFromHand (discardHand) ;

// 2. Potiahnut 3 nové karty z velkého balika
std: :vector<Card> newCards = bigDeck.draw(3);
for (auto& c : newCards) {

player.hand.push back(c);

}

10. RieSenie vysledka suboja na mriezke

void resolveCombatAndReplace (Grid& grid, int x, int vy,
const Cardé& winningCard,
int winningPlayer,
std::vector<Card>& discardPile)

// 1. Zober porazenU kartu z mriezky
Card defeated = grid.removeCard(x, V);

// 2. UloZz ju do discard pile (nie k vitazovi!)
discardPile.push back (defeated);

// 3. Umiestni vitazovu kartu na pole

grid.placeCard(x, y, winningCard, winningPlayer);
}
11. Hlavnad trieda Game - ktorad vSetko spaja
class Game {
public:

Grid grid;

Player playerl;

Player player?2;

BigDeck bigDeck;

vector<Card> discardHand;

int currentPlayer = 0;

Game (int w, int h)
grid(w, h), playerl(0), player2(l) {}

Player& getCurrentPlayer () |
return currentPlayer == 0 ? playerl : player?2;

}



Player& getOpponent () |
return currentPlayer == 0 ? player2 : playerl;

}

volid endTurn () {
currentPlayer = 1 - currentPlayer;

}
}i



