
1. Karta
struct Card {

enum Element { Fire, Water, Earth, Air };
Element element;
int value;

};

2. Pole mriežky (GridTile)
Na mriežke sú tvary, ktoré sa obsadzujú kartou.
struct GridTile {

bool occupied = false;
int owner = -1; // 0 = hráč 1, 1 = hráč 2
Card placedCard; // karta použitá na obsadenie

};

3. Tvar na mriežke (ShapeType)
enum class ShapeType {

Cross,
S-shape,
Square,
L-shape

};

4. Mriežka
class Grid {
public:

int width, height;
vector<vector<GridTile>> tiles; // 2-D matica na reprezentaciu herného

polia

Grid(int w, int h) : width(w), height(h), tiles(h,
vector<GridTile>(w)) {}

// Kontrola hranic
bool isInside(int x, int y) const {

return x >= 0 && x < width && y >= 0 && y < height;
}

bool placeCard(int x, int y, const Card& card, int playerId) {
if (!isInside(x, y)) return false;
if (tiles[y][x].occupied) return false;

tiles[y][x].occupied = true;
tiles[y][x].owner = playerId;
tiles[y][x].placedCard = card;
return true;

}

Card removeCard(int x, int y) {
Card c = tiles[y][x].placedCard;
tiles[y][x].occupied = false;
tiles[y][x].owner = -1;
return c;

}

};

5. Hráč (Player)
Každý hráč má:

- 3 karty v ruke
- svoj balíček ~10 kariet
- zozbierané ("vyhrané") karty
- ID hráča

class Player {
public:

int id; // 0 alebo 1
vector<Card> hand; // 3 karty
vector<Card> deck; // vlastný balíček
vector<Card> wonCards; // získané karty z mriežky

Player(int playerId) : id(playerId) {}

// Potiahnutie kariet zo svojho balíčka
void drawFromDeck(int n) {

for (int i = 0; i < n && !deck.empty(); i++) {
hand.push_back(deck.back());
deck.pop_back();

}
}

// Vyhodenie všetkých kariet z ruky
void discardAllFromHand(vector<Card>& discardHand) {

for (auto& c : hand) discardHand.push_back(c);
hand.clear();

}
};

6. Veľký balíček (BigDeck)
Používa sa pri situácii, že hráč nemá žiadnu hrateľnú kartu.
class BigDeck {
public:

vector<Card> cards;
vector<Card> draw(int n) {

vector<Card> drawn;
for (int i = 0; i < n && !cards.empty(); i++) {

drawn.push_back(cards.back());
cards.pop_back();

}
return drawn;

}

bool isEmpty() const {
return cards.empty();

}
};

7. Discard pre karty odhodené z ruky
vector<Card> discardHand;

8. Kontrola, či hráč môže zahrať
bool canPlayerPlay(const Player& p, const Player& opponent, const Grid&
grid) {

// zatiaľ len placeholder, reálna logika podľa hodnot a susedov
return true;

}

9. Situácia: hráč nemôže zahrať – odhodenie ruky + potiahnutie z veľkého
balíčka

void handleNoPlayableCards(Player& player, BigDeck& bigDeck,
std::vector<Card>& discardHand) {

// 1. Odhodiť celú ruku
player.discardAllFromHand(discardHand);

// 2. Potiahnuť 3 nové karty z veľkého balíka
std::vector<Card> newCards = bigDeck.draw(3);
for (auto& c : newCards) {

player.hand.push_back(c);
}

}

10. Riešenie výsledka súboja na mriežke
void resolveCombatAndReplace(Grid& grid, int x, int y,

const Card& winningCard,
int winningPlayer,
std::vector<Card>& discardPile)

{
// 1. Zober porazenú kartu z mriežky
Card defeated = grid.removeCard(x, y);

// 2. Ulož ju do discard pile (nie k víťazovi!)
discardPile.push_back(defeated);

// 3. Umiestni víťazovu kartu na pole
grid.placeCard(x, y, winningCard, winningPlayer);

}
11. Hlavná trieda Game – ktorá všetko spája
class Game {
public:

Grid grid;
Player player1;
Player player2;
BigDeck bigDeck;
vector<Card> discardHand;

int currentPlayer = 0;

Game(int w, int h)
: grid(w, h), player1(0), player2(1) {}

Player& getCurrentPlayer() {
return currentPlayer == 0 ? player1 : player2;

}

Player& getOpponent() {
return currentPlayer == 0 ? player2 : player1;

}

void endTurn() {
currentPlayer = 1 - currentPlayer;

}
};

